Cooling	Pollutant trapping	Rainfall capture
large leaf area presence of leaf hairs light leaf colour high ET rate	large leaf area presence of leaf hairs rough surfaces	large leaf area presence of leaf hairs rough surfaces high ET rate

References

- 1 Cameron, R.W., Blanuša, T., et al012. The domestic garden its contribution to urban green infrastructure. Urban Forestry & Urban Greening 1(2): 129–137.
- 2 Loram, A., Tratalos, J., Warren, P.H. and Gaston, K.J., 2007. Urban domestic gardens (X): the extent & structure of the resource in five major cities. Landscape Ecolo@2(4): 601-615.
- 3 Perry, T. & Nawaz, R., 2008. An investigation into the extent and impacts of hard surfacing of domestic gardens in an area of Leeds. Landscape and Urban Plannin (1): 1–13.
- 4 Cameron, R.W. & Blanuša, T., 2016. Green infrastructure and ecosystem services. Annals of, B68(a)): 377–391.
- 5 Blanuša, T. and Vaz Monteiro, M.M., 2018. Green streets: classifications, plant species, substrates, irrigation and maintenance, In: Perini, K. & Perez, G. (eds) Nature-based Strategies for Urban and Building Sustainability. Elsevier.
- 6 Vaz Monteiro, M., Blanuša, T., et a2017. Functional green roofs: importance of plant choice in maximising summertime environmental cooling and substrate insulation potential. Energy and Buildings: 56-68.
- 7 Blanuša, T., Vaz Monteiro, M.M., et al., 2016. Planting choices for retrofitted green roofs. In: Wilkinson, S. and Dixon, T. (eds.) Green Roof Retrofit: Building Urban Resilience. Wiley-Blackwell.
- 8 Blanuša, T., Fantozzi, F., et, 2015. Leaf trapping and retention of particles by holm oak and other common tree species in Mediterranean urban environments. Urban Forestry & Urban Greening(4): 1095–1101.
- 9 Abhijith, K.V., et al.2017. Air Pollution Abatement Performances of Green Infrastructure in Open Road and Built-up Street Canyon Environments. Atmospheric Environment. 162: 71–86.

Hedges for urban gardens

Urban residents routinely face a range of environmental challenges: air pollution, noise, increased risk of flooding due to paving over. Urban hedgerows and hedges in domestic gardens have a role to play in minimising these risks and improving environmental quality.

Key environmental benefits ("ecosystem services") provided by urban vegetation, including hedges:

Reducing flood risks Sequestering particulate and gaseous airborne pollutants as well as soil-borne chemical pollutants Reducing noise Providing habitat, shelter and corridors for wildlife Providing shade and transpirational air cooling

Recent RHS research and collaborative work has shown